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Time-Marching Method for the Prediction of
Two-Dimensional, Unsteady Flows
of Condensing Steam

A.J. White* and J. B. Young?
University of Cambridge, Cambridge CB3 ODY, England, United Kingdom

A time-accurate, two-dimensional time-marching technique is presented which can predict unsteady phe-
nomena in condensing steam flows. Conservation equations for the mixture are solved using a variation of a
well-established Euler solver, while nucleation and droplet growth calculations are performed in a Lagrangian
framework by tracking particle pathlines. A special averaging technique is used to retain a polydispersion of
droplet sizes, necessary for the accurate modeling of the condensation processes, without consuming excessive
storage or CPU time. The basic Euler solution technique has been validated by comparison with predictions
from an independent source for the unsteady flow of air in a channel. The full scheme has been used to compute
nucleating flows in converging-diverging nozzles for which agreement with experiment for both steady and
unsteady cases is extremely good. All the results presented are for flows in nozzles for which experimental data
are available, but the scheme may also be applied to turbine cascade geometries.

Nomenclature
Cog = isobaric specific heat capacity of vapor
e = specific internal energy
h = specific enthalpy
hy, = specific enthalpy of evaporation
J = nucleation rate per unit volume
k = Boltzmann’s constant
L = mean free path of vapor molecule
m, m; = mass of water molecule, mass of group i droplet
n = number of droplets per unit mass of mixture
Pr, = Prandtl number of vapor
)4 = pressure
q., q. = condensation and evaporation coefficients
R, = specific gas constant
r = droplet radius
r* = Kelvin-Holmholtz critical radius
T = temperature, period of oscillation
t = time
u,v = velocity components
x,y = spatial coordinates
y = wetness fraction
a = droplet growth parameter
v = ratio of specific heat capacities
AT = vapor subcooling
Ag = thermal conductivity of vapor
P = density
o = surface tension
Subscripts
f = liquid phase
g = wapor phase
i = droplet group i
s = saturation conditions
Superscript
n = time level
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Introduction

HE presence of condensation in the low pressure (LP)

stages of steam turbines is known to have an adverse
effect on turbine performance, and since it is these stages
which produce a large proportion of the power output, there
is considerable financial impetus for improving their effi-
ciency. Considerable research into turbines operating with
wet steam has therefore been undertaken, but nevertheless,
most design procedures still adopt a single-phase approach
combined with an empirical correlation® to account for wet-
ness effects. Recently, the use of optical wetness probes? has
enabled the performance of individual stages operating with
wet steam to be measured. These measurements have indi-
cated that it is usually the stage in which condensation first
occurs that demonstrates the lowest efficiency, and further,
that the magnitude of the associated loss appears to vary with
the location of condensation onset (i.e., with the degree of
turbine inlet superheat). This should be a source of optimism
for researchers, since it implies that the high levels of loss
associated with wetness are not necessarily inevitable.

It has been suggested® that the occurrence of oscillating
flow regimes as a result of the release of latent heat during
condensation may be a contributing factor towards the poor
performance of some LP stages. These regimes involve the
formation, migration, and collapse of an aerodynamic shock
wave within the condensation zone and were first observed
by Schmidt* for the flow of moist air. An explanation of their
behavior was later given by Barschdorff and Fillipov® who
also attempted to predict their frequency using a quasi-
steady theoretical model. To date, however, observation and
prediction of these oscillations have been confined to con-
verging-diverging nozzles in which the flow is essentially
one-dimensional, and whether such phenomena occur in the
three-dimensional environment of a steam turbine remains to
be properly investigated. However, if this were so, the con-
sequences would be twofold:

1) The periodic quenching of nucleation by the moving
shock wave would result in larger water droplets than would
otherwise be produced (thus giving rise to larger thermody-
namic and mechanical losses).

2) The existence of the oscillating shock wave itself might
have an adverse effect on blade aerodynamics.

This article presents a two-dimensional time-marching tech-
nique for computing the unsteady nonequilibrium flow of wet
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steam with a view to investigating the type of unsteadiness
described above. All the results presented here are for flows
in channels or convering-diverging nozzles, but the method
is readily extendable to turbine cascade geometries. The so-
lution procedure uses a strategy similar to previous methods
for two-dimensional wet-steam calculations®’ and involves the
Lagrangian tracking of fluid particles for the calculation of
nucleation and dropiet growth combined with the solution of
the mixture conservation equations in an Eulerian framework.
The method described here, however, is the first to be based
on a time-accurate Euler solver and also to incorporate track-
ing in two dimensions of particle pathlines rather than stream-
lines. It is therefore suitable for the accurate investigation of
unsteady phenomena. (It is necessary to distinguish between
streamlines and pathlines for the case of unsteady flow.
Streamflows are lines which are parallel to the velocity vectors
at every point in the flow at a given instant, whereas pathlines
define the trajectory of a fluid particle as its position varies
with time. Streamlines and pathlines become coincident for
steady flow.)

Basic Equations

The equations governing the flow of wet steam have been
presented many times in the literature and are reproduced
here in outline only for completeness.

Wet steam is assumed to be a mixture of vapor at T, p,
and p,, with a large number of spherical liquid droplets. In
reality, there will be a continuous distribution of droplet sizes,
but for the present calculations this has been discretized into
a finite number of droplet groups. The ith group contains #;
droplets per unit mass of mixture, each of r; and 7;. The liquid
density p; is assumed constant.

The overall wetness fraction y of the mixture is the sum of
the contributions from the individual groups, given by

y = Ey, = Enimi = 2gﬂ-r%’ini (1)
The mixture density is related to the vapor density by
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where the approximation follows if the volume of the liquid
phase is neglected. The specific internal energy of the mixture
is

e= (1~ ye, + Zye, (3

where e, is evaluated at T,, and e, is the specific internal
energy of an ith group droplet, including a contribution from
the surface energy

3 do;
e =e; or, <o-l T, dT,->

e; being the specific internal energy of bulk liquid evaluated
at T;. The mixture specific enthalpy is given by a similar
expression.

In general, the two phases are not in equilibrium, so T,
and T, differ from 7,. The vapor subcooling is defined as

AT =T, - T, )

and Gyamarthy’s approximation is used for the temperature
of the liquid phase

T, = T, — AT, (%)

where AT, is the capillary subcooling associated with group i
droplets, given by

ar, = 2L ©)
pilst;

For the very small droplets formed by spontaneous nu-
cleation, velocity slip between the vapor and liquid phases
may be neglected. With this approximation, the Euler equa-
tions for the inviscid, adiabatic, compressible flow of the mix-
ture become identical to their single-phase counterparts

continuity
% v (om) =
Y + V-(pu) = 0 @
momentum
du Vp
at+(uV)u+p—0 (8)
energy
pE
XE) 4 v (ourt) = 0 ©)

where E and H are the specific energy and specific total en-
thalpy of the mixture, defined in the normal fashion as E =
e+ uwand H = h + u?2.

For single-phase flow, Eqs. 7-9 are closed by means of
thermal and caloric equations of state. For wet steam, how-
ever, the closure requires, in addition, an expression for the
wetness fraction which is obtained from the theories of nu-
cleation and droplet growth.

Nucleation

For the present calculations, the rate of formation of crit-
ically sized embryos per unit volume of mixture J is given by
steady-state classical nucleation theory® with a correction for
nonisothermal effects, as proposed by Kantrowitz’

1 ﬂ Eé drrio,
I=1T5 \/ <wm3> o, P\ kT, (10)

where ¢ is the nonisothermal correction factor

¢=27'1hfg hfg ___1_
v+ 1RT, \R, T, 2

and r* is the Kelvin-Helmholtz critical radius

. 20T,
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(11)

The liquid surface tension o, is evaluated at the vapor tem-
perature.

Assuming zero interphase velocity slip, the values of the #,
(the number of droplets per unit mass of mixture in group i)
remain constant once nucleation has terminated (except, of
course, in regions of complete re-evaporation).

It should be stressed that there still remains some contro-
versy over the exact form of the nucleation rate equation with
other theories (e.g., the “gasification factor”” modification'®)
giving nucleation rates that differ by several orders of mag-
nitude from that of Eq. (10). In addition, inspection of Eq.
(10) reveals the strong dependence of the nucleation rate on
surface tension. (Since 7* is proportional to o2, the exponent
contains the third power of ¢. Typically, 1% decrease in o



WHITE AND YOUNG: 2D UNSTEADY FLOWS OF CONDENSING STEAM 581

would increase the nucleation rate by a factor of 2.) Various
corrections have been proposed for the surface tension of
small clusters of molecules (e.g., Tolman'!), but these are at
best approximate. For the present work the flat film value of
o has been adopted and only its variation with temperature
has been taken into account. Nucleation rates computed in
this way are then in close agreement with the many experi-
ments in nozzles, expansion chambers, and diffusion cloud
chambers reported in the literature.

As a fluid particle traverses the flowfield, it sees a contin-
uous variation of subcooling, which, in accordance with Egs.
(10) and (11), results in the formation of nuclei of different
radii, which subsequently grow at different rates. It is there-
fore important to retain a spectrum of droplet sizes in the
calculations if nucleation and growth are to be modeled ac-
curately. However, it is very expensive in terms of both com-
puter storage and computation time to retain all the droplet
groups. Therefore, groups which are of very similar radii are
replaced with a single group containing the same mass of
liquid and total number of droplets. More groups are retained
in the smaller droplet size range since, owing to their greater
specific surface area, these droplets play a more active role
in the interphase heat and mass transfer.

Droplet Growth

The overall growth rate of the liquid phase is found by
summing. contributions from the individual droplet groups.
- Noting that m; = 4mr?p,/3 and differentiating (1) yields

Dy _ s Dy
Dt_th

3y, Dr,

=2r,- Dt

(12)

where D/Dt is the rate of change following a fluid particle
(i.e., the substantive derivative).

Equation (12) neglects the contribution from freshly nu-
cleated droplets. (This is a good approximation since nuclea-
tion i$ assumed to occur at the critical radius.)

The rate of growth of a group i droplet Dr,/Dt is dictated
by the rate at which the enthalpy of phase change can be
conducted to the surrounding vapor. The growth law adopted
here is a modified form of that due to Gyarmarthy'?

h — 1) Dr, _ AT, — T,
£ Dt plr, + 1.89(1 — v)(I/Pr,)]

(13)

where v is given by

R, T
V=ﬁ<a——0.5-—
hfg
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The factor (1 ~ ») and the corresponding parameter a were
suggested by Young® who noted that agreement between
experiments in steam nozzles and calculations based on the
unmodified Gyarmathy equation tended to deteriorate for
Wilson Point pressures below 0.5 bar. Furthermore, it proved
impossible to restore agreement by a simple adjustment to
the nucleation rate equation alone. The parameter a reflects
the fact that ¢, and g, are not necessarily equal under con-
ditions of nonequilibrium droplet growth. At present, the
kinetic theory of the liquid state is not sufficiently well-de-
veloped to provide a theoretical estimate of the value of a,
which must therefore be regarded as a parameter to be de-
termined empirically. However, it should be appreciated that
the disagreement between theory and experiment, even with
the usual assumption of @ = 0 (i.e., g. = ¢.), is not dramatic
and that variations in the correction factor (1 — ») have no
qualitative effect on the results and conclusions of this article.

Introducing Egs. (5), (6), and (11) into Eq. (13) gives (after
some minor approximations)

A Dr, ALAT[L = (r*/r)] (14)

“ Dt plr + 1.89(1 — v)(l,/Pr,)]

(h

8

This equation shows that the droplet growth rate is inextri-
cably linked with the vapor subcooling A7, the determination
of which is now described.

Equations (8) and (9) are combined to give the Lagrangian
form of the energy equation

Dk _1Dp )
Dt pDt

[For nonequilibrium flow, Eq. (15) does not imply that the
entropy of a fluid particle remains, constant. The heglect of
viscosity and thermal conductivity in the momentum and en-
ergy conservation Egs. (8) and (9) ensures zero entropy pro-
duction due to velocity and temperature gradients in the vapor
phase. This however, does not preclude the possibility of
entropy generation due to irreversible droplet growth, be-
cause the droplets are considered as sources and sinks of heat
and mass distributed uniformly throughout the vapor and their
temperature is, in general, different from that of their sur-
roundings. This aspect of the mathematical modeling proce-
dure is discussed by Marble.?® The situation is similar to other
cases in relaxation gas dynamics as described by Becker.?]
Incorporating an expression similar to Eq. (3) for the mixture
enthalpy and applying standard thermodynamic relations then
yields '

DAT) DT, 1 _D
e S T
Dt Dt ¢, z Dt b = )
+.l.<t.££&_2¥l)9£ (16)
Crg P P Dt

where a, is the coefficient of thermal expansion of the vapor

1 {dp,
- {5
% Py <8Tg),,

Equations (12), (14), and (16) together enable the wetness
fraction to be calculated and, with a suitable equation of state
for the vapor phase, complement the Euler equations for the
mixture variables.

The fact that low-pressure steam behaves as an imperfect
gas is accurately accounted for by the use of an equation of
state which includes an empirical expression for the com-
pressibility parameter Z{p, T,} defined such that p = [1 +
Zi{p, T,}]p.R.T,. Thermodynamically consistent expressions
relate all the other vapor phase properties and details of these,
along with the form of Z{p, T,}, are given by Young.’

Numerical Solution of Equations

The computational grid employed is of the widely used H
mesh variety, consisting of quadrilaterals formed by the in-
tersection of quasiorthothogonals (lines of constant x) with
quasistreamlines. Refinement of the mesh is made in regions
where condensation is expected to occur. For symmetrical
nozzles, calculations are performed on a grid spanning just
one-half of the width of the nozzle.

Solution of Euler Equations
The Euler Egs. (7-9) may be recast in integral form as

a
a—tfvdxdy+f{pdy—cdx}:o (17)
where
P pu pv
2
U= pu’ F pu+p, G = ;;uv
pv puv pv- +p

pE puH pvH
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Equation (17) is marched forward in time using a second-
order-accurate Runge-Kutta algorithm. The scheme used is
essentially the same as that of Jameson et al.,' but differs in
the following respects:

1) Properties are stored at cell vertices and the control
volumes are as depicted in Fig. 1. Fluxes across a face of a
control volume are evaluated by averaging quantities stored
at its two ends and the calculated changes in flow properties
within the cells are distributed equaily to the four vertices,
thus preserving spatial symmetry.

2) In order to preserve time accuracy for unsteady calcu-
lations, a global time step is employed rather than local time
steps pertaining to the stability limits of the individual cells.

3) The adaptive blend of second- and fourth-order dissi-
pative terms proposed by Jameson is retained in the stream-
wise direction but has been replaced in the transverse direc-
tion by a constant second-order smoothing as used by Denton.?
This is because, for a symmetrical nozzle calculation, typically
only 5-10 grid points are required across the half-width, and
a fourth-order differencing routine would become preoccu-
pied with extrapolating differences at the flow boundaries. In
addition, some numerical difficulties have been reported on
the use of Jameson-style smoothing with cell vertex schemes. !¢

A four-step scheme has been found to be robust and com-
putationally efficient and this takes the form

U =U" — aAti(R,; + R,_,; + R,_, ;_,
+ R, )" + DI}
U® =U" - a,Ati(R,; + R,_,; + R, ,,; ,
+ R,;_ ) + D}}
U® = U" — a;, AR, + R, ; + Ri_y;_, (18)
+R,;_)® + D]}
Urtt = U™ — a, Ai(R,; + R, ; + R,_,, ,
+ R,;_)® + D}

where a4, = 0.25, a, = 0.333, a, = 0.5, and a, = 1.0. The
R, ; are the residuals in cell (i, j) (see Fig. 1), calculated by
summing the fluxes into the cell and dividing by its area, and
the Dy; are the dissipative terms (evaluated at the first step
only) added to stabilize the scheme and prevent overshoots
in the neighborhood of shock waves.

At the inlet boundary, specific entropy and total enthalpy
are specified and the pressure is extrapolated from the inte-
rior. At the outflow boundary, the temperature and velocity
components are extrapolated from the interior. For super-
sonic outflow the pressure is extrapolated, whereas for sub-
sonic outflow it is specified.

Node (i+1.j+1)

=

Node (i ,j Node (i+1j)

Fig. 1 Computational control volume and distribution of residuals.

Nucleation and Droplet Growth Calculations

Since the time derivatives of Eqs. (14) and (16) are all
substantive, these equations are most conveniently solved by
integrating along fluid pathlines. For this purpose, the velocity
field obtained by solution of the Euler equations is used to
determine the instantaneous trajectories of fluid particles.
The procedure is illustrated in Fig. 2. Point Q represents a
computational node in the new time plane (n + 1), and point
P, in the old time plane n, is the origin of a fluid particle
subsequently arriving at Q. The position of P is estimated by
tracking backwards in time from O and is then corrected by
a single iteration.

Examination of Eq. (16) reveals that the droplet spectrum
(and hence, the wetness fraction) at Q is completely specified
by the original spectrum and subcooling at P, together with
the pressure variation as a function of time along PQ. The
relevant properties at P are found using a four-point inter-
polation routine which is based on transforming the quadri-
lateral cells into squares. (This is a trivial matter for the H
mesh upon which the present calculations are based.)

In order to determine the variation of pressure along PQ,
an estimate of the pressure at Q is required. This is obtained
by first expressing the vapor phase equations of state in dif-
ferential form

(@ »
o= (55) a0 () e

de, de
de, = <—&> dp, + (—5-> dT,
g apg 4 aTg 4

Combining these two equations readily gives an expression
relating changes in pressure to changes in density and specific
internal energy of the vapor. These changes may be inter-
preted as variations in time at a fixed point in space (i.e.,
between Q' and Q), and are therefore provided by the Euler
solver in conjunction with expressions (2) and (3). Hence, it
is possible to estimate the pressure at Q. The variation along
PQ is prescribed by assuming a constant expansion rate,
—D(#4p)/Dt, between P and Q. [It will be noted that the
above procedure requires knowledge of the wetness fraction
y at Q. In the present calculations, old values of y (i.e., at
Q') have been used, but numerical experiments have been
conducted using values of y corrected by a first-order differ-
ence for dy/at. These produced identical results, suggesting
that a more sophisticated approach is unnecessary.]

The numerical integration of the nucleation and droplet
growth equations is performed using straightforward predic-
tor-corrector routines which are contained within a wet-steam
“black box,” originally developed by Guha and Young'” and
later modified by Young.” One advantage of this black box
is that it only relates thermodynamic states of the two-phase
mixture, requiring no knowledge of the velocity field. It can
thus be incorporated into any one- two- or three-dimensional

Time plane n+1

'
]
[
[l
.
.
'
]
[
¢
1
s
]
'
s
o

Time plane n

Fig. 2 Fluid particle pathline.
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Fig. 3 Mach number contours for unsteady flow of air over a bump.
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Fig. 4 Coridensation in converging-diverging nozzles— comparison with experiments of Moore et al.?

steady or unsteady flow solver, according to application. The
only required inputs are the initial conditions and the pres-
sure-time variation of a fluid partlcle in this case obtained as
described above.

Examples of Applicatioh

Transonic Flow of Air with Fluctuating Back Pressure

Before attempting to apply the method to condensing flows
of steam, various tests were carried out to validate the basic
Euler solver. That presented here is for the flow of air over
a hump in a channel. Unsteadiness is induced by a sinusoidal
variation of the back pressure, with an amplitude of 12% of
inlet stagnation pressure and a frequency of 369 Hz [corre-
sponding to a reduced frequency {a,f/L) of 5.31, where L is
the channel length, f the true frequency, and a, the stagnation
speed of sound based on the inlet stagnation temperature].
Thé nature, amplitude, and frequency of shock oscillations
in this case bear great resemblance to those induced by con-
densation in nozzles. This is, therefore, an excellent test of
the suitability of the Euler solver as a basis for predicting
unsteady condensation phenomena.

The results are compared in Fig. 3 with calculations of the
same flow by Bolcs et al.'® using a flux vector splitting scheme.
(In this figure, T stands for the period of oscillation 1/f.) This
scheme, in turn, has been validated against linear theory for
smaller amplitude oscillations. Despite the considerably greater
simplicity of the present method, the predictions of Mach
number contours are very simildr. For a description and phys-
ical explanation of the flow pattern at the various stages in
the cycle, the reader is referred to the paper by Bolcs et al.'®

Steady Condensation in Steam Nozzles: Experimental Comparison

If dry steam with an inlet stagnation state near the satu-
ration line is expanded through a converging-diverging nozzle,
its subcooling may eventually reach a level (typically 30—-40°C)
sufficient to induce significant spontaneous nucleation. In lab-
oratory nozzle tests this occurs in the supersonic part of the

6.0
5.0
s 4.0 -
g
o
£ 3.0 v
&£ —
= ¥ Binnie and Green {ref. 20)
2 2.0 T @ Barschdorffetal. (ref. 19) Y
S M Moses and Stein (ref. 21)
| A Moore et al. (ref. 22)
1.0
0.0 a—
0.0 0.1 1.0

‘Wilson Point Pressure (bar)

Fig. 5 Variation of droplet growth parameter «'* with Wilson point
pressure.

flow, since subsonic expansions from a dry stagnation state
are unable to provide the required subcooling. The effect of
the condensation heat release may override the effects of the
area increase, causing a deceleration of the flow and a cor-
responding increase in pressure. Traditionally, this pressure
rise has been termed the “condensation shock™ but, as long
as the heat release is not great enough to decelerate the flow
to sonic conditions (i.e., the subcritical regime), variations
are in fact continuous. (Strictly speaking, this is only true in
the context of a one-dimensional flow approximation, since
in real two- and three-dimensional flows the possibility of
oblique shock waves means that discontinuities may exist in
an entirely supersonic flowfield.)

Numerous measurements have been made of the pressure
distribution in nozzles for condensing steam.’-2' However,
Young' has pointed out that the success of nucleation and
droplet growth theories can only be assessed separately if both
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Fig. 6c Pressure and droplet size fluctuations for nozzle of Fig. 6a.

pressure variation and droplet size measurements are avail-
able, and unfortunately, such measurements are much less
abundant. Those of Moore et al.,?> however, are particularly
relevant to LP steam turbine conditions, and these are pre-
sented in Fig. 4 along with predictions from the current the-
ory. The mean droplet sizes and pressure distributions are
very well-predicted in all cases, with the possible exception
of nozzle B. It is interesting to note that the flow in some of
these nozzles is quite strongly two-dimensional. The evidence
for this is the undulations in centerline pressure distribution,
which are particularly pronounced for nozzle B. The signifi-
cance of these two-dimensional effects (which have also been
verified using the method of characteristics for perfect gas
flow) is that the varying expansion rates will strongly influence
the position of maximum subcooling, and hence, the final
droplet size. A two-dimensional calculation scheme is there-
fore liable to predict quite a different droplet size distribution
from a one-dimensonal approach. Unfortunately, the two-
dimensionality makes it much more difficult to take account
of boundary layers, and this may explain the lack of agreement
in the case of nozzle B. (It is customary to infer the effective
nozzle area from the pressure distribution of a completely dry
expansion. This technique is valid when the flow is effectively
one-dimensional because the pressure distribution is then only
a function of the area ratio. However, it is difficult to take
account of the boundary layers when the flow exhibits two-
dimensional features without a thorough knowledge of the
displacement thickness variation.)

In view of the comments made in preceding sections about
the uncertainties surrounding nucleation and droplet growth
theories, some degree of calibration of the equations is nec-
essary. In accordance with the work of Young,'® this is achieved
through variation of g, and the parameter « in the expression
following Eq. (13). Since recent experimental work has in-
dicated that the condensation coefficient for water is unlikely
to differ substantially from unity, all the calculations were

performed with g, = 1, while @ was allowed to vary. Figure
5 shows the values of « required to give best agreement with
a number of experiments reported in the literature covering
a range of Wilson point pressures between 0.1-1.0 bar. Due
to experimental uncertainty, these values do not form a smooth
curve, but the trend is clear. Figure 5 was therefore used as
a “calibration graph” in order to obtain a value of « for the
calculations of unsteady flow presented below.

Unsteady Supercritical Condensation

If the level of heat release from condensation is more than
sufficient to revert the flow to sonic conditions (i.e., the su-
percritical regime), then an adiabatic shock wave establishes
itself within the condensation zone. In situations where the
heat release is particularly large, the shock wave may be un-
able to locate a stable position and thus migrates upstream
where it interacts with the nucleation zone. The increase in
temperature through the shock wave results in a suppression
of nucleation, and hence, the subsequent heat release (and
thereby the reason for the shock wave’s existence) dies away.
A supersonic expansion with attendant condensation is then
re-established and the process repeats itself, giving rise to
self-sustained oscillations.

Figure 6a shows the Mach number contours (based on the
frozen speed of sound) predicted by the present method for
oscillations of the type described above. The sonic lines (M
= 1) have been highlighted for clarity, and regions containing
significant condensed liquid are indicated by shading. Also
shown in Fig. 6a are the droplet number spectra, as would
be seen by a probe situated on the centerline, near the nozzle
exit, where near-equilibrium conditions, constant pressure,
and hence, constant wetness fraction prevail. These spectra
have been plotted at times approximately 0.17 (where 7 is
the period of oscillation) later than the adjacent contour plots,
the difference being the time of flight of fluid particles be-
tween the nucleation zone at the throat and the “probe” in
the exit plane.

At the beginning of the cycle (¢ = 0), there are three sonic
lines corresponding to choking at the geometric throat, de-
celeration through a supercritical shock wave, and subsequent
re-acceleration to supersonic conditions. Nucleation occurs
rapidly over a very small region near the throat, so the dropiet
number distribution is almost monodispersed. At ¢ = 0.27,
the shock wave has moved upstream, but has not yet reached
the nucleation zone, so there is little change in the droplet
spectrum. At ¢ = 0.47, the shock wave begins to interact
with the nucleation zone, the temperature increase suppress-
ing the formation of nuclei. In order to achieve the same
downstream equilibrium wetness fraction, the smaller number
of droplets must grow to a larger size, as shown by the change
in the droplet spectrum. By ¢ = 0.6T, the shock wave is
passing through the throat, and has become so weak as to be
entirely subsonic (a shock wave may still be maintained in
the flow since, due to its movement, the upstream relative
conditions are still supersonic). Two supersonic patches re-
main near the nozzle walls and these are consistent with the
structures observed by Schnerr? for the flow of moist air, in
which two incipient shocks were accompanied by an unsteady
central portion. The residual condensation, formed before the
arrival of the shock wave, has now been convected away
leaving a dry region just downstream of the throat, and a new
nucleation front begins further downstream. The droplet spec-
trum is thus bimodal, consisting of large droplets originating
from nucleation near the throat, and smaller droplets origi-
nating from the new nucleation front. Finally, at r = 0.87,
the large droplets have been convected out of the nozzle
completely and the new condensation front begins to domi-
nate. The droplet spectrum therefore reverts to a monomodal
form.

The time-averaged droplet size distribution is plotted in Fig.
6b and is seen to be slightly bimodal. Evidence of bimodality
has been observed in optical measurements in LP steam tur-



WHITE AND YOUNG: 2D UNSTEADY FLOWS OF CONDENSING STEAM 587

bines,?* but is much stronger than that shown in Fig. 6b, which
would not be detectable with an optical probe. Unsteady phe-
nomena of this type are thus unlikely to be the sole cause of
the bimodal droplet distributions found in turbines.

The results presented in Figs. 6a and 6b are for the nozzle
of Skillings et al.,? for which experimental measurements of
fluctuating pressure and mean droplet size were made at points
on the nozzle centerline. Predictions of these quantities are
shown in Fig. 6¢, where it can be seen that the amplitude of
the pressure fluctuation and the computed mean droplet size
variation compare very favorably with the measured values.
Furthermore, the predicted frequency of 420 Hz compares
well with the measurement of 380 Hz. Previous predictions
for this particular experiment include the one-dimensional
pseudounsteady calculations of Skillings et al.? which gave a
frequency of ~650 Hz, and the fully unsteady one-dimen-
sional calculations of Guha and Young'’ which gave a fre-
quency of ~540 Hz. The contours of Fig. 6a, however, in-
dicate that the flow is markedly two-dimensional and this
accounts for the improved accuracy of the present method.

Conclusions

A time-accurate two-dimensional time-marching technique
has been described and used to predict both steady and un-
steady flows of condensing steam in nozzles. Agreement with
experimental results is very good in terms of pressure distri-
butions, droplet sizes, and frequency of oscillation. The tech-
nique is computationally efficient requiring, e.g., approxi-
mately 5 min per cycle of oscillation for the nozzle of Fig. 6
on a grid of 64 X 7 nodes, using an Alliant FX-80 computer.
By retaining a polydispersion of droplet sizes the calculations
accurately model the condensation process. This is particu-
larly relevant to unsteady condensing flows where, as shown
in Fig. 6a, secondary nucleation results in a bimodal droplet
size distribution.

The comparisons of calculations with experimental results
serve mainly as a validation of the computer code and scarcely
demonstrate its two-dimensional capability. With some minor
extensions, however, the code will provide a valuable tool for
investigating flows in steam turbine blade passages, where the
complex interaction between condensation and blade aero-
dynamics is not at present well understood.

References

!Baumann, K., “Some Recent Developments in Large Steam Tur-
bine Practice,” Journal of the Institution of Electrical Engineers, Vol.
59, 1921, p. 565.

2Walters, P. T., “Wetness and Efficiency Measurements in LP
Turbines with an Optical Probe as an Aid to Improving Perfor-
mance,” joint American Society of Mechanical Engineers/Inst. of
Electrical and Electronic Engineers Conf. on Power Generation, Pa-
per 85-JPGC-GT-9, Milwaukee, WI, Oct. 1985.

3Skillings, S. A., Moore, M. J., Walters, P. T., and Jackson, R.,
“A Reconsideration of Wetness Loss in LP Steam Turbines,” Pro-
ceeding of the BNES (British Nuclear Energy Society), Conference on
Technology of Turbine Plant Operating with Wet Steam, London,
1988, pp. 171-177.

“Schmidt, B., “Beobachtungen iiber das Verhalten der durch
Wasserdampfkondensation ausgel6sten Stérungen in einer Uber-
schall-Windkanaldiise,” Ph.D Dissertation, Univ. of Karlsruhe (TH),
Germany, 1962.

*Barschdorff, D., and Fillipov, G. A., “Analysis of Certain Special
Operating Modes of Laval Nozzles with Local Heat Supply,” Heat
Transfer—Soviet Research, Vol. 2, No. 5, 1970, pp. 76-87.

SMoheban, M., and Young, J. B., “A Time-Marching Method for
the Calculation of Blade-to-Blade Nonequilibrium Wet Steam Flows
in Turbine Cascades,” Inst. of Mechanical Engineers, Conf. on Com-

putational Methods in Turbomachinery, Univ. of Birmingham, Paper
C76/84, Birmingham, England, UK, 1984, pp. 89-99.

"Young, I. B., “Two-Dimensional Nonequilibrium Wet Steam Cal-
culations for Nozzles and Turbine Cascades,” Transactions of the
American Society of Mechanical Engineers Journal of Turbomachi-
nery, Vol. 114, 1992, pp. 569-579.

8MacDonald, J. E., “Homogeneous Nucleation of Vapour Con-
densation,” American Journal of Physics, Pt. 1, Vol. 30, 1962-63,
pp- 870-877; Pt. 2, Vol. 131, pp. 31-41.

“Kantrowitz, A., “Nucleation in Very Rapid Expansions,” Journal
of Chemical Physics, Vol. 19, No. 9, 1951, pp. 1097-1100.

WFeder, J., Russell, K. C., Lothe, J., and Pound, G. M., “Ho-
mogeneous Nucleation and Growth of Droplets in Vapours,” Ad-
vances in Physics, Vol. 15, 1966, pp. 111-178.

“Tolman, R. C., “The Effect of Droplet Size on Surface Tension,”
Journal of Chemical Physics, Vol. 17, 1949, pp. 333-337.

2Gyarmarthy, G., “Two-Phase Steam Flow in Turbines and Sep-
arators,” edited by M. J. Moore, and C. H. Sieverding, Hemisphere,
Washington, DC, 1976, pp. 163-168.

3Young, J. B., “The Spontaneous Condensation of Steam in
Supersonic Nozzles,” Physico Chemical Hydrodynamics, Vol. 3, No.
1, 1982, pp. 57-82.

“Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution
of the Euler Equations by Finite Volume Methods Using Runge-
Kutta Time Stepping Schemes,” AIAA 14th Fluid and Plasma Dy-
namics Conf., AIAA Paper 81-1259, Palo Alto, CA, June 1981.

*Penton, J. D., “An Improved Time-Marching Method for Two-
and Three-Dimensional Blade to Blade Flows,” Journal of Engi-
neering for Power, Vol. 105, 1983, pp. 514-524.

15He, L., “An Euler Solution of Unsteady Flows Around Oscil-
lating Blades,” American Society of Mechanical Engineers Gas Tur-
bine and Aeroengine Congress and Expo., Paper 89-GT-279, To-
ronto, Canada, June 1989.

"Guha, A., and Young, J. B., “Time-Marching Prediction of Un-
steady Condensation Phenomena Due to Supercritical Heat Addi-
tion,” IUTAM Symposium on Adiabatic Waves in Liquid-Vapour
Systems, edited by G. E. A. Meier, and P. A. Thompson, Géttingen,
Germany, 1989, Springer-Verlag, 1991, pp. 159-170.

8Bgles, A., Fransson, T. H., and Platzer, M. F., “Numerical So-
lution of Inviscid Transonic Flow Through Nozzles with Fluctuating
Back Pressure,” Transactions of the American Society of Mechanical
Engineers Journal of Turbomachinery, Vol. 111, 1989, pp. 169-180.

¥Barschdorff, D., Hausmann, G., and Ludwig, A., “Flow and
Drop Size Investigations of Wet Steam at Sub- and Supersonic Ve-
locities with the Theory of Homogeneous Condensation,” 3rd Conf.
on Steam Turbines of Great Output, Gdansk, Poland, Sept. 1974;
see also PIMP (Trans. Institute of Fluid-Flow Machinery), Polish
Acad. Sci., Vols. 70-72, 1976, pp. 241-257.

2Binnie, A. M., and Green, J. R., “An Electrical Detector of
Condensation in High Velocity Steam,” Proceedings of the Royal
Society (UK), A, Vol. 181, 1943, p. 134.

2!Moses, C. A., and Stein, G. D., “On the Growth of Steam
Droplets Formed in a Laval Nozzle Using Both Static Pressure and
Light Scattering Measurements,” Journal of Fluids Engineering, Vol.
100, 1978, pp. 311-322.

ZMoore, M. J., Walters, P. T., Crane, R. 1., and Davidson,
B. J., “Predicting the Fog Drop Size in Wet Steam Turbines,” Inst.
of Mechanical Engineers (UK), Wet Steam 4 Conf., Univ. of War-
wick, Paper C37/73, 1973.

#Schnerr, G., “Homogene Kondensation in Stationéren Trans-
sonischen Strémungen Durch Lavaldiisen und um Profile,” Ph.D.
Dissertation, Univ. Karlsruhe (TH), Germany, 1986, p. 50.

ZWalters, P. T., “Improving the Accuracy of Wetness Measure-
ments in Generating Turbines by Using a New Procedure for Ana-
lysing Optical Transmission Data,” Proceedings of the BNES (British
Nuclear Energy Society), Conference on Technology of Turbine Plant
Operating with Wet Steam, London, 1988, pp. 207-215.

ZMarble, F. E., “Some Gas Dynamic Problems in the Flow of
Condensing Vapours,” Astronautica Acta, Vol. 14, 1969, pp. 585-
614.

2Becker, E., “Relaxation Effects in Gas Dynamics,” Aeronautical
Journal of the Royal Aeronautical Society, Vol. 74, 1970, pp. 736-
748.



